587 research outputs found

    The Indian family on UK reality television: Convivial culture in salient contexts

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below, copyright 2012 @ the author.This article demonstrates how The Family (2009), a fly-on-the wall UK reality series about a British Indian family, facilitates both current public service broadcasting requirements and mass audience appeal. From a critical cultural studies perspective, the author examines the journalistic and viewer responses to the series where authenticity, universality, and comedy emerge as major themes. Textual analysis of the racialized screen representations also helps locate the series within the contexts of contested multiculturalism, genre developments in reality television and public service broadcasting. Paul Gilroy’s concept of convivial culture is used as a frame in understanding how meanings of the series are produced within a South Asian popular representational space. The author suggests that the social comedy taxonomy is a prerequisite for the making of this particular observational documentary. Further, the popular (comedic) mode of conviviality on which the series depends is both expedient and necessary within the various sociopolitical contexts outlined

    Inertial parameters and superfluid-to-normal phase transition in superdeformed bands

    Get PDF
    The quasiclassically exact solution for the second inertial parameter B\cal B is found in self-consistent way. It is shown that superdeformation and nonuniform pairing arising from the rotation induced pair density significantly reduce this inertial parameter. The different limiting cases for B\cal B, which allow to study an interplay between rapid rotation, pairing correlations, and mean field deformation, are considered. The new signature for the transition from pairing to normal phase is suggested in terms of the variation of B/A{\cal B}/{\cal A} versus spin. Experimental data indicate the existence of such transition in the three superdeformed mass regions.Comment: 8 pages, LaTeX, 3 figure

    Suppression of core polarization in halo nuclei

    Get PDF
    We present a microscopic study of halo nuclei, starting from the Paris and Bonn potentials and employing a two-frequency shell model approach. It is found that the core-polarization effect is dramatically suppressed in such nuclei. Consequently the effective interaction for halo nucleons is almost entirely given by the bare G-matrix alone, which presently can be evaluated with a high degree of accuracy. The experimental pairing energies between the two halo neutrons in 6^6He and 11^{11}Li nuclei are satisfactorily reproduced by our calculation. It is suggested that the fundamental nucleon-nucleon interaction can be probed in a clearer and more direct way in halo nuclei than in ordinary nuclei.Comment: 11 pages, RevTex, 2 postscript figures; major revisions, matches version to appear in Phys. Rev. Letter

    Dynamic study on fusion reactions for 40,48^{40,48}Ca+90,96^{90,96}Zr around Coulomb barrier

    Full text link
    By using the updated improved Quantum Molecular Dynamics model in which a surface-symmetry potential term has been introduced for the first time, the excitation functions for fusion reactions of 40,48^{40,48}Ca+90,96^{90,96}Zr at energies around the Coulomb barrier have been studied. The experimental data of the fusion cross sections for 40^{40}Ca+90,96^{90,96}Zr have been reproduced remarkably well without introducing any new parameters. The fusion cross sections for the neutron-rich fusion reactions of 48^{48}Ca+90,96^{90,96}Zr around the Coulomb barrier are predicted to be enhanced compared with a non-neutron-rich fusion reaction. In order to clarify the mechanism of the enhancement of the fusion cross sections for neutron-rich nuclear fusions, we pay a great attention to study the dynamic lowering of the Coulomb barrier during a neck formation. The isospin effect on the barrier lowering is investigated. It is interesting that the effect of the projectile and target nuclear structure on fusion dynamics can be revealed to a certain extent in our approach. The time evolution of the N/Z ratio at the neck region has been firstly illustrated. A large enhancement of the N/Z ratio at neck region for neutron-rich nuclear fusion reactions is found.Comment: 21 pages, 7 figures,3 table

    Analysis of the superdefomed rotational bands

    Get PDF
    All available experimental data for the ΔI=2\Delta I=2 transition energies in superdeformed bands are analyzed by using a new one-point formula. The existence of deviations from the smooth behavior is confirmed in many bands. However, we stress that one cannot necessarily speak about staggering patterns as they are mostly irregular. Simulations of the experimental data suggest that the irregularities may stem from the presence of irregular kinks in the rotational spectra. This could be a clue but, at the moment, where such kinks come from is an open question.Comment: 6 pages, RevTex, 7 p.s. figures, submitted to P.R.

    High-energy scissors mode

    Get PDF
    All the orbital M1 excitations, at both low and high energies, obtained from a rotationally invariant QRPA, represent the fragmented scissors mode. The high-energy M1 strength is almost purely orbital and resides in the region of the isovector giant quadrupole resonance. In heavy deformed nuclei the high-energy scissors mode is strongly fragmented between 17 and 25 MeV (with uncertainties arising from the poor knowledge of the isovector potential). The coherent scissors motion is hindered by the fragmentation and B(M1)<0.25  ΌN2B(M1) < 0.25 \; \mu^2_N for single transitions in this region. The (e,eâ€Č)(e,e^{\prime}) cross sections for excitations above 17 MeV are one order of magnitude larger for E2 than for M1 excitations even at backward angles.Comment: 20 pages in RevTEX, 5 figures (uuencoded,put with 'figures') accepted for publication in Phys.Rev.

    The long journey from the giant-monopole resonance to the nuclear-matter incompressibility

    Full text link
    Differences in the density dependence of the symmetry energy predicted by nonrelativistic and relativistic models are suggested, at least in part, as the culprit for the discrepancy in the values of the compression modulus of symmetric nuclear matter extracted from the energy of the giant monopole resonance in 208Pb. ``Best-fit'' relativistic models, with stiffer symmetry energies than Skyrme interactions, consistently predict higher compression moduli than nonrelativistic approaches. Relativistic models with compression moduli in the physically acceptable range of K=200-300 MeV are used to compute the distribution of isoscalar monopole strength in 208Pb. When the symmetry energy is artificially softened in one of these models, in an attempt to simulate the symmetry energy of Skyrme interactions, a lower value for the compression modulus is indeed obtained. It is concluded that the proposed measurement of the neutron skin in 208Pb, aimed at constraining the density dependence of the symmetry energy and recently correlated to the structure of neutron stars, will also become instrumental in the determination of the compression modulus of nuclear matter.Comment: 9 pages with 2 (eps) figure

    Symplectic quantization of self-dual master Lagrangian

    Get PDF
    We consider the master Lagrangian of Deser and Jackiw, interpolating between the self-dual and the Maxwell-Chern-Simons Lagrangian, and quantize it following the symplectic approach, as well as the traditional Dirac scheme. We demonstrate the equivalence of these procedures in the subspace of the second-class constraints. We then proceed to embed this mixed first- and second-class system into an extended first-class system within the framework of both approaches, and construct the corresponding generator for this extended gauge symmetry in both formulations.Comment: 27 page

    Metamagnetic Quantum Criticality in Sr3Ru2O7

    Get PDF
    We consider the metamagnetic transition in the bilayer ruthenate, Sr3Ru2O7{\rm Sr_3Ru_2O_7}, and use this to motivate a renormalization group treatment of a zero-temperature quantum-critical end-point. We summarize the results of mean field theory and give a pedagogical derivation of the renormalization-group equations. These are then solved to yield numerical results for the susceptibility, the specific heat and the resistivity exponent which can be compared with measured data on Sr3Ru2O7{\rm Sr_3Ru_2O_7} to provide a powerful test for the standard framework of metallic quantum criticality. The observed approach to the critical point is well-described by our theory explaining a number of unusual features of experimental data. The puzzling behaviour very near to the critical point itself, though, is not accounted for by this, or any other theory with a Fermi surface

    Gamow-Teller Strength in the Region of 100^{100}Sn

    Full text link
    New calculations are presented for Gamow-Teller beta decay of nuclei near 100^{100}Sn. Essentially all of the 100^{100}Sn Gamow-Teller decay strength is predicted to go to a single state at an excitation energy of 1.8 MeV in 100^{100}In. The first calculations are presented for the decays of neighboring odd-even and odd-odd nuclei which show, in contrast to 100^{100}Sn, surprisingly complex and broad Gamow-Teller strength distributions. The results are compared to existing experimental data and the resulting hindrance factors are discussed.Comment: 12 pages (latex) and 2 figures available on reques
    • 

    corecore